29 January 2013

Vehicle Accident Prevention Using eye Blink Sensor



Now a day’s accidents are increasing at a large pace, and various technologies are being introduced to reduce the accidents. In this project we provide means of accident prevention using eye blink wherein the vehicle is stopped immediately and intimated wherever needed.

In this project we have two sections. One is transmitter section which is located in the vehicle and another one is Receiver section located in remote place (Police station, near ones, etc). In the transmitter section the eye blink sensor is placed near the eye to sense the blink count and this information is transmitted in the form of pulses and is given to the Microcontroller. The Microcontroller uses this information to compare with the normal eye blink programmed in the chip and if any abnormal situation arises the vehicle is stopped with an alarm indication, this operation is enabled by means of the driver circuit connected to the vehicle motor and the signal is transmitted via RF-transmitter at the frequency of 433.92 MHz. In the Receiver side the transmitted signal is received and the signal is decoded and given to the Microcontroller, which uses this information for displaying the alert message in the LCD as programmed, simultaneously a buzzer alert is given.

LIST OF HARDWARE MODULES:
1.Power Supply for 8051 Microcontroller
This section describes how to generate +5V   DC power supply
The power supply section is the important one. It should deliver constant output regulated power supply for successful working of the project. A 0-12V/1 mA transformer is used for this purpose. The primary of this transformer is connected in to main supply through on/off switch& fuse for protecting from overload and short circuit protection. The secondary is connected to the diodes to convert 12V AC to 12V DC voltage. And filtered by the capacitors, which is further regulated to +5v, by using IC 7805

Microcontroller
A microcontroller(also microcontroller unit, MCU or µC) is a small computer on a single integrated circuit consisting of a relatively simple CPU combined with support functions such as a crystal oscillator, timers and etc. Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, remote controls, office machines, appliances, power tools, and toys. The input and output device or connected to port pins of the controller. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. The device, such as GSM, GPS and RFID are interfaced to the controller via serial communication i.e. TX and RX pins. 

2. ENCODER
The HT-12E IC encode 12-bits of information and serially transmits this data on receipt of a Transmit Enable and a LOW signal on pin-14 /TE.  Pin-17 the D_OUT pin of the HT-12E serially transmits whatever data is available on pins 10, 11, 12 and 13, or D0, D1, D2 and D3.

3. RF TRANSMITTER
The TWS-434 transmitter accepts both linear and digital inputs can operate from 1.5 to 12 Volts-DC, and makes building a miniature hand-held RF transmitter very easy. The P2_0, P2_1, P2_2 and P2_3 pin of controller is assumed as data transmit pins. The DATA_OUT pin of encoder is connected to the DATA_IN pin of RF Transmitter and then the RF Transmitter transmits the data to the receiver.

4. DECODER
The 212 series of decoders are capable of decoding information’s that consist of N bits of address and 12_N bits of data. Of this series, the HT12D is arranged to provide 8 address bits and 4 data bits, and HT12F is used to decode 12 bits of address information. The VT, or valid transmission pin of the HT-12D could signal the microcontroller to grab the 4-bits of data from the data output pins.

5.RF RECEIVER
The receiver also operates at 433.92MHz, and has a sensitivity of 3uV.  The TWS-434 receiver operates from 4.5 to 5.5 volts-DC, and has both linear and digital outputs. The P2_0, P2_1, P2_2 and P2_3 pin of controller is assumed as data transmit pins. The DATA_OUT pin of RF Transmitter is connected to the DATA_IN pin of DECODER and then the data is processed by the decoder.

4. RELAY
 A relay is an electrically operated switch. Electric current through the coil of the relay creates a magnetic field which attracts a    lever and changes the switch contacts.  The coil current can be on or off so relays have two switch positions and they are double-throw (changeover) switches. A simple electromagnetic relay, such as the one taken from a car in the first picture, is an adaptation of an electromagnet. It consists of a coilof wire surrounding a soft iron core, an iron yoke, which provides a low reluctance path for magnetic flux, a movable iron armature, and a set, or sets, of contacts. The armature is hinged to the yoke and mechanically linked to a moving contact or contacts. It is held in place by a springso that when the relay is deenergized there is an air gap in the magnetic circuit. In this condition, one of the two sets of contacts in the relay pictured is closed, and the other set is open. The P0_0, P0_1, P0_2 and P0_3 pin of controller is assumed as data transmit pins to the relay through relay driver ULN 2003. ULN 2003 is just like a current driver.

Block Diagram


Related projects:

VEHICLE PARKING SYSTEM AUTOMATION USING RFID



 In today’s world, there is a continuous need for automatic appliances with the increase in standard of living. There is a sense of urgency for developing circuits that would ease the complexity of life. Automation is intended to reduce manpower with the help of intelligent systems.There has been a considerable amount of reduction in transaction costs and decrease in stock shortage with the use of Radio Frequency Identification (RFID) technology in automation. Most of the RFID networks include a wide range of automation technologies. These technologies are RFID readers, RFID writers, RFID barcode scanners, RFID smart sensors and RFID controllers. 

In this study, a solution has been provided for the problems encountered in parking-lot management systems via RFID technology. RFID readers, RFID labels, computers, barriers and software are used as for the main components of the RFID technology. The software has been handled for the management, controlling, transaction reporting and operation tasks for parking lots located on various parts of the city. Check-ins and check-outs of the parking-lots will be under control with RFID readers, labels and barriers.  

Radio-frequency identification is an automatic identification method wherein the data stored on RFID tags or transponders is remotely retrieved.  RFID tag is a device that can be attached to or incorporated into a product, animal or person for identification and tracking using radio waves. Some tags can be read from several meters away, beyond the line of sight of the reader. RFID technology can be used in vehicle parking systems of malls and buildings.

The system normally consists of a microcontroller, vehicle counter, sensors, display board, gate controller, RFID tags and RFID reader. In order to use the “RFID BASED CAR PARKING”, the vehicle owner has to register his vehicle with parking owner and get a RFID tag. To park the car, RFID tag is placed near RFID reader which is installed near the entry gate of parking lot. As soon as RFID tag is read by the reader, system automatically deducts the specified amount from that RFID tag and entry gate boomer opens to allow the car inside the parking area. At the same time parking counter increments by one. Deducted amount for parking, balance amount of that RFID tag and the parking status are all displayed in LCD 

Similarly when a car leaves the parking area, the door is opened at the exit gate. The parking counter is decremented. No amount will be deducted at the time of exit. The system also offers the facility to recharge the amount for each RFID tag. No manual processing is involved. In addition, the system provides security.   
Personnel costs will be reduced considerably using this technology. It will be possible to see unmanned, secure, automized parking-lots functioning with RFID technology in the future. Check-ins and check-outs will be handled in a fast manner without having to stop the cars so that traffic jam problem will be avoided during these processes. Drivers will not have to stop at the circulation points and parking tickets will be out of usage during check-ins and check-outs. It will be avoided ticket-jamming problems for the ticket processing machines as well. 

Vehicle owners will not have to make any payments at each check-out thus a faster traffic flow will be possible. Since there won't be any waiting during check-ins and check-outs the formation of emission gas as a result of such waiting will be avoided. An automized income tracking system, a car tracking system for charging and a central parking-car tracking system have been developed and utilized. Instead of cars' parking on streets, a more modern and a fast operating parking-lot system have been developed.



Block Diagram
 





Related Projects

















Related Posts Plugin for WordPress, Blogger...